

HSINSOU ET-P110 永久型抗靜電膠粒

HSINSOU ET-P110 為一高分子永久型高效能之表面抗靜電劑,高分子型抗靜電劑之優越持久的抗靜電性,是因為其在聚合反應成彈性體塑膠中,會在表面層形成筋狀,導電迴路由於特殊設計的分子結構,有如介面活性劑在水溶液中形成圓柱狀的微胞(Micell)。它適用於 TPU, TPR 之基材,經加工混合後其表面電阻值,因應用基材之不同可達 $10^8 \sim 10^{12} \Omega$ / sq 以內的理想範圍。

一. HSINSOU ET-P110 物性表:

物性		單位	測試方法	ET-P110
外觀			目視	透明清澈膠粒
比重		gr/c.c.	ASTM D-792	1.22 ±0.02
100% MOD		kg/cm ²	ASTM D-412	32 ±5
伸長率		%	ASTM D-412	1000 ↑
拉力強度		kg/cm^2	ASTM D-412	190 ±10
撕裂強度		kg/cm	ASTM D-624	70 ±10
表面電阻係數		Ω/sq	ASTM D-257	$10^{7} \sim 10^{8}$
R. I.			ASTM D-542	1.50
熱分解溫度		$(^{\circ}\mathbb{C})$		290℃
	Pb+	ppm.	US EPA3050B	N. D.
重金屬	Cd	ppm.	EN1122	N. D.
分析	Hg+	ppm.	US EPA3052	N. D.
	Cr+ 6	ppm.	US EPA7196A	N. D.

二. 特性:

- 1. 物性保持性/機械安定性佳。
- 2. 具永久抗靜電性(耐擦拭/耐水洗)。
- 3. 抗靜電包裝材。
- 4. 透明性佳,不改變基材之色澤。

- 5. 耐熱性好,在成型加工溫度時不分解。
- 6. 無毒、無臭、安全之熱可塑性環保塑膠。
- 7. 它適用於 TPU、TPR 之基材。

三. 應用:

- (A). 用於鞋材 TPU、硬度 65A,添加約 $4\sim6\%$ 體積 電阻(Ω/cubic): $10^7\Omega/\mathrm{cubic}$
- (B). 用於薄膜,建議添加量(供參考):

基材品名	TPU, TPR	
ET-P110 添加量	5% ~ 15%	
表面電阻(Ω/sq)	$10^8 ~\sim~ 10^{10}$	

※備註:上述僅作參考,藥劑及使用量之增減, 依需求品質作適當調整,請先行試驗後 再使用。